Temporal fluctuations in the differential rotation of cool active stars
نویسنده
چکیده
This paper reports positive detections of surface differential rotation on two rapidly rotating cool stars at several epochs, by using stellar surface features (both cool spots and magnetic regions) as tracers of the large scale latitudinal shear that distorts the convective envelope in this type of stars. We also report definite evidence that this differential rotation is different when estimated from cool spots or magnetic regions, and that it undergoes temporal fluctuations of potentially large amplitude on a time scale of a few years. We consider these results as further evidence that the dynamo processes operating in these stars are distributed throughout the convective zone rather than being confined at its base as in the Sun. By comparing our observations with two very simple models of the differential rotation within the convective zone, we obtain evidence that the internal rotation velocity field of the stars we investigated is not like that of the Sun, and may resemble that we expect for rapid rotators. We speculate that the changes in differential rotation result from the dynamo processes (and from the underlying magnetic cycle) that periodically converts magnetic energy into kinetic energy and vice versa. We emphasise that the technique outlined in this paper corresponds to the first practical method for investigating the large scale rotation velocity field within convective zones of cool active stars, and offers several advantages over asteroseismology for this particular purpose and this specific stellar class.
منابع مشابه
Dynamo models and differential rotation in late-type rapidly rotating stars
Increasing evidence is becoming available about not only the surface differential rotation of rapidly rotating cool stars but, in a small number of cases, also about temporal variations, which possibly are analogous to the solar torsional oscillations. Given the present difficulties in resolving the precise nature of such variations, due to both the short length and poor resolution of the avail...
متن کاملممانهای گرانشی خورشید
Gravitational multipole moments of the Sun are still poorly known. Theoretically, the difficulty is mainly due to the differential rotation for which the velocity rate varies both on the surface and with the depth. From an observational point of view, the multipole moments cannot be directly measured. However, recent progresses have been made proving the existence of a strong radial different...
متن کاملEuv Flare Activity in Late-type Stars
Extreme Ultraviolet Explorer Deep Survey observations of cool stars (spectral type F to M) have been used to investigate the distribution of coronal flare rates in energy and its relation to activity indicators and rotation parameters. Cumulative and differential flare rate distributions were constructed and fitted with different methods. Power laws are found to approximately describe the distr...
متن کاملMeasuring starspots on magnetically active stars with the VLTI
We present feasibility studies to directly image stellar surface features, which are caused by magnetic activity, with the Very Large Telescope Interferometer (VLTI). We concentrate on late type magnetically active stars, for which the distribution of starspots on the surface has been inferred from photometric and spectroscopic imaging analysis. The study of the surface spot evolution during co...
متن کاملDifferential rotation in rapidly rotating F - stars ⋆ , ⋆ ⋆
We obtained high quality spectra of 135 stars of spectral types F and later and derived " overall " broadening functions in selected wavelength regions utilizing a Least Squares Deconvolution (LSD) procedure. Precision values of the projected rotational velocity v sin i were derived from the first zero of the Fourier transformed profiles and the shapes of the profiles were analyzed for effects ...
متن کامل